Measuring Dynamical Prediction Utility Using Relative Entropy

نویسنده

  • RICHARD KLEEMAN
چکیده

A new parameter of dynamical system predictability is introduced that measures the potential utility of predictions. It is shown that this parameter satisfies a generalized second law of thermodynamics in that for Markov processes utility declines monotonically to zero at very long forecast times. Expressions for the new parameter in the case of Gaussian prediction ensembles are derived and a useful decomposition of utility into dispersion (roughly equivalent to ensemble spread) and signal components is introduced. Earlier measures of predictability have usually considered only the dispersion component of utility. A variety of simple dynamical systems with relevance to climate and weather prediction is introduced, and the behavior of their potential utility is analyzed in detail. For the climate systems examined here, the signal component is at least as important as the dispersion in determining the utility of a particular set of initial conditions. The simple ‘‘weather’’ system examined (the Lorenz system) exhibited different behavior with the dispersion being more important than the signal at short prediction lags. For longer lags there appeared no relation between utility and either signal or dispersion. On the other hand, there was a very strong relation at all lags between utility and the location of the initial conditions on the attractor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Observational Modeling of the Kolmogorov-Sinai Entropy

In this paper, Kolmogorov-Sinai entropy is studied using mathematical modeling of an observer $ Theta $. The relative entropy of a sub-$ sigma_Theta $-algebra having finite atoms is defined and then   the ergodic properties of relative  semi-dynamical systems are investigated.  Also,  a relative version of Kolmogorov-Sinai theorem  is given. Finally, it is proved  that the relative entropy of a...

متن کامل

Some properties of the parametric relative operator entropy

The notion of entropy was introduced by Clausius in 1850, and some of the main steps towards the consolidation of the concept were taken by Boltzmann and Gibbs. Since then several extensions and reformulations have been developed in various disciplines with motivations and applications in different subjects, such as statistical mechanics, information theory, and dynamical systems. Fujii and Kam...

متن کامل

ENTROPY OF DYNAMICAL SYSTEMS ON WEIGHTS OF A GRAPH

Let $G$ be a finite simple graph whose vertices and edges are weighted by two functions. In this paper we shall define and calculate entropy of a dynamical system on weights of the graph $G$, by using the weights of vertices and edges of $G$. We examine the conditions under which entropy of the dynamical system is zero, possitive or $+infty$. At the end it is shown that, for $rin [0,+infty]$, t...

متن کامل

Shannon entropy: a rigorous mathematical notion at the crossroads between probability, information theory, dynamical systems and statistical physics

Statistical entropy was introduced by Shannon as a basic concept in information theory, measuring the average missing information on a random source. Extended into an entropy rate, it gives bounds in coding and compression theorems. I here present how statistical entropy and entropy rate relate to other notions of entropy, relevant either to probability theory (entropy of a discrete probability...

متن کامل

Entropy operator for continuous dynamical systems of finite topological entropy

In this paper we introduce the concept of entropy operator for continuous systems of finite topological entropy. It is shown that it generates the Kolmogorov entropy as a special case. If $phi$ is invertible then the entropy operator is bounded with the topological entropy of $phi$ as its norm.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002